NEW TECHNOLOGIES AS A DRIVER OF CHANGE IN THE AGRICULTURAL SECTOR

Authors

  • Vlado Nikola Radic Faculty of Business Economics and Entrepreneurship, Belgrade
  • Nikola Vlado Radić Faculty of Business Economics and Entrepreneurship http://orcid.org/0000-0002-8862-3004
  • Vladan Dušan Cogoljević Faculty of Business Economics and Entrepreneurship http://orcid.org/0000-0002-9019-7913

DOI:

https://doi.org/10.5937/ekoPolj2201147R

Keywords:

agriculture, digital technology, Internet of Things, sensors, drones, change

Abstract

Faced with a demographic boom, enormous urbanization and a lack of agricultural land, traditional agricultural production is losing pace with new needs and demands. Due to the increased demand for food, efforts are being made to develop technologies that would improve production, with the sustainable use of existing resources. Solving this challenge is possible by introducing Internet of Things technologies, satellite navigation, mobile communications and ubiquitous computing, which is called smart agriculture. The main goals of smart agriculture are to increase yields (provide information needed to analyze and make decisions that will maximize yields), efficient water use, more efficient agricultural operations (automation of daily activities, real-time monitoring, advanced analytics, daily and seasonal forecasting), cooperation with suppliers and public administration are more efficient and take place in real time). This article highlights the potential of the Internet of Things, big data and drones in agriculture, as well as the challenges of applying these technologies in relation to traditional agricultural practices.

Downloads

Download data is not yet available.

Author Biographies

Nikola Vlado Radić, Faculty of Business Economics and Entrepreneurship

He was born in 1991. Assistant professor, teaches financial management, corporate finance, microeconomics

Vladan Dušan Cogoljević, Faculty of Business Economics and Entrepreneurship

He is manager for marketing and information support. He holds a doctorate in agricultural economics

References

Al-Kahtani, M., & Karim, L. (2018). Dynamic data aggregation approach for sensor-based big data. International Journal of Advanced Computer Science and Applications, 9(7), 62-72.

Ampatzidis, Y., Partel, V., & Costa, L. (2020). Agroview: Cloud-based application to process, analyze and visualize UAV-collected data for precision agriculture applications utilizing artificial intelligence. Computers and Electronics in Agriculture, 174, 105457. doi.org/10.1016/j.compag.2020.105457

Anushree, M., & Krishna, R. (2018). A smart farming system using Arduino based technology. Int. J. Adv. Res. Ideas Innov. Technology, 4(4), 850-856.

Asghari, P., Rahmani, A. M., & Javadi, H. H. S. (2019). Internet of Things applications: A systematic review. Computer Network, 148, 241–261. doi.org/10.1016/j.comnet.2018.12.008

Bonneau, V., & Copigneaux, B. (2017). Industry 4.0 in Agriculture: Focus on IoT aspects. European Commission, Brussels, Belgium. Retrieved from https://ec.europa.eu/growth/tools-data bases/dem/monitor/content/industry-40-agriculture-focus-iot-aspects (October 25, 2020).

Chui, M., Collins, M., Patel, M. (2021). The Internet of Things: Catching up to an accelerating opportunity. McKinsey & Company, New York.

Cowie, P., Townsend, L. & Salemink, K. (2020). Smart rural futures: will rural areas be left behind in the 4th industrial revolution? Journal of Rural Studies, 79, 169-176. doi.org/10.1016/j.jrurstud.2020.08.042

FAO (2017). The future of food and agriculture - Trends and challenges. Rome. Italy. Retrieved from http://www.fao.org (October 25, 2020).

Farooq, M., Riaz, S., Abid, A., Abid, K., & Naeem, M. A. (2019). A Survey on the Role of IoT in Agriculture for the Implementation of Smart Farming. IEEE Access, 7(1), 156237-156271. doi.org/10.1109/access.2019.2949703

Forkan, A., Khalil, I., Ibaida, A., & Tari, Z. (2015). BDCaM: Big data for contextaware monitoring - A personalized knowledge discovery framework for assisted healthcare. IEEE transactions on cloud computing, 5(4), 628-641. doi.org/10.1109/tcc.2015.2440269

Gralla, P. (2018). Precision agriculture yields higher profits, lower risks. Retrieved from https://www.hpe.com/us/en/insights/articles/precision-agriculture-yields-higherprofts-lower-risks-1806.html (October 28, 2020).

Gubbi, J., Buyya, R., Marusic, S., & Palaniswami, M. (2013). Internet of Things (IoT): a vision, architectural elements, and future directions. Future Generation Computer Systems, 29 (7), 1645–1660. doi.org/10.1016/j.future.2013.01.010

Gupta, M., Abdelsalam, M., Khorsandroo, S., & Mittal, S. (2020). Security and privacy in smart farming: Challenges and opportunities. IEEE Access, 8, 34564–34584. doi.org/10.1109/access.2020.2975142

Hilbert, M. (2016). Big data for development: A review of promises and challenges. Development Policy Review, 34(1), 135–174. doi.org/10.1111/dpr.12142

Hussein, M. S., López Ramos, J. A., & Álvarez Bermejo, J. A. (2020). Distributed Key Management to Secure IoT Wireless Sensor Networks in Smart-Agro. Sensors, 20, 2242. doi.org/10.3390/s20082242

Ingale, V., & Jadhav, D. (2016). Big Data A Great Revolution in Precision Agriculture using Predictive Weather Analysis and Soil Analysis. International Journal of Agriculture Innovations and Research, 5(3), 410-412. doi.org/10.13140/rg.2.2.32922.44488

Kamath, R., Balachandra, M., & Prabhu, S. (2019). Raspberry Pi as Visual Sensor Nodes in Precision Agriculture: A Study. IEEE Accesss, 7, 45110-45122. doi.org/10.1109/access.2019.2908846

Kim, J., Kim, S., Ju, Ch., & Son, H. (2019). Unmanned Aerial Vehicles in Agriculture: A Review of Perspective of Platform, Control, and Applications. IEEE Access, 4, 1-17. doi.org/10.1109/access.2019.2932119

Khanna, A., & Kaur, S. (2019). Evolution of Internet of Things (IoT) and its significant impact in the field of precision agriculture. Computers and Electronics in Agriculture, 157, 218–231. doi.org/10.1016/j.compag.2018.12.039

Kumar, H., & Menakadevi, T. (2018). A review on big data analytics in the field of agriculture. International Journal of Latest Transactions in Engineering and Science, 1(4), 1-10.

Li, S., Xu, L., & Zhao, S. (2015). The internet of things: A survey. Information Systems Frontiers, 17(2), 243-259. doi.org/10.1007/s10796-014-9492-7

Li, D., Zheng, Y., & Zhao, W. (2019). Fault analysis system for agricultural machinery based on big data. IEEE Access, 7, 99136-99151. doi.org/10.1109/access.2019.2928973

Liu, S., Guo, L., Webb, H., Ya, X., & Chang, X. (2019). Internet of Things monitoring system of modern eco-agriculture based on cloud computing. IEEE Access, 7(1), 37050-37058. doi.org/10.1109/access.2019.2903720

Luck, J., Pitla, S., Shearer, S., Mueller, T., Dillon, C. Fulton, J., & Higgins, S. (2010). Potential for pesticide and nutrient savings via map-based automatic boom section control of spray nozzles. Computers and Electronics in Agriculture, 70(1), 19–26. doi.org/10.1016/j.compag.2009.08.003

Luković, M., Pantović, D., & Ćurčić, M. (2021). Wild edible plants in gourmet offer of ecotourism destinations: case from biosphere reserve „GolijaStudenica”. Economics of Agriculture, 68(4), 1061–1076. Doi: doi.org/10.5937/ekoPolj2104061

Madakam, S., Ramaswamy, R., & Tripathi, S. (2015). Internet of Things (IoT): A literature review. Journal of Computer and Communications, 2015, 3, 164-173. doi.org/10.4236/jcc.2015.35021

Nalini, N., & Suvithavani, P. (2017). A Study on Data Analytics: Internet of Things & Health Care. International Journal of Computer Science and Mobile Computing, 6(3), 20-27.

Nandyala, C. S., & Kim, H. K. (2016). Big and meta data management for U-agriculture mobile services. Int. Journal of Software Engineering and Its Applications, 10(1), 257-270. doi.org/10.14257/ijseia.2016.10.2.21

Nebiker, S., Lack, N., Abächerli, M., & Läderach, S. (2016). A light weight multispectral sensor for micro UAV-opportunities for very high resolution airborne remote sensing. XXIII ISPRS Congress, Prague, Proceedings, 963-970. doi.org/10.5194/isprsarchives-XLI-B1-963-2016

Pathak, H., Kumar, G., Mohapatra, S., Gaikwad, B., & Rane J. (2020). Use of Drones in Agriculture: Potentials, Problems and Policy Needs. Publication no. 300, ICAR-National Institute of Abiotic Stress Management, Baramati. India.

Rao, G., Indira, V., Manikanta, P., & Srinivas, D. (2019). Large Scale Farming Analysis with the Help of IOT & Data Analytics. International Journal of Advanced Multidisciplinary Scientific Research, 2(3), 27-39.

Radic, V. (2020). Industry 4.0-Education 4.0-Society 5.0. Proceedings of Int. Conference “Business Trends”, Kruševac, Serbia, 1-13. [In Serbian: Radić, V. (2020). Industrija 4.0–Edukacija 4.0–Društvo 5.0. Zbornik radova Međunarodne konferencije “Trendovi u poslovanju”, Kruševac, Srbija, 1-13]. ISBN 978-86-7566-053-8. COBISS.SR-ID 21530633

Rajeswari, S., Suthendran, K., & Rajakumar, K. (2017). A smart agricultural model by integrating IoT, mobile and cloud-based big data analytics. In: Int. Conference on Intelligent Computing and Control (I2C2) Proceedings, 1-5. doi.org/10.1109/I2C2.2017.8321902

Rasooli, M., Bhushan, B., & Kumar, N. (2020). Applicability of wireless sensor networks & IoT in saffron & wheat crops: A smart agriculture perspective. Int. Journal of Scientifc & Technology Research, 9(2), 2456-2461.

Ribarics, P. (2016). Big Data and its impact on agriculture. Ecocycles, 2(1), 33-34. doi.org/10.19040/ecocycles.v2i1.54

Ryan, M., Jellema, A., Perez-Freire, L., Poppe, K., Trajkovic, M., Vermesen, O., & Beers, G. (2021). Policy recommendations from IoF2020. Wageningen University & Research.

Sarker, M., Islam, M., Ali, M., Islam, M. S., Salam, M., & Mahmud, S. (2019). Promoting digital agriculture through big data for sustainable farm management. International Journal of Innovation and Applied Studies, 25(4), 1235-1240.

Simelli, I., & Tsagaris, A. (2015). The Use of Unmanned Aerial Systems (UAS) in Agriculture. Proceedings of 7th International Conference on Information and Communication Technologies in Agriculture, Food and Environment (HAICTA), Kavala, Greece, 730-736.

Shaf, U., Mumtaz, R., García-Nieto, J., Hassan, S. A., Zaidi, S.A.R., & Iqbal, N. (2019). Precision agriculture techniques and practices: From considerations to applications. Sensors, 19(17), 3796. doi.org/10.3390/s19173796

Shang, X., Yin, H., Wang, Y., Li, M., & Wang, Y. (2020). Secrecy Performance Analysis of Wireless Powered Sensor Networks Under Saturation Nonlinear Energy Harvesting and Activation Threshold. Sensors, 20, 1632. doi.org/10.3390/s20061632

Stergiou, C., Psannis, K. E., Kim, B. G., & Gupta, B. (2018). Secure integration of IoT and cloud computing. Future Generation of Computer Systems, 78, 964–975. doi.org/10.1016/j.future.2016.11.031

Stubb, M. (2016). Big data in US agriculture. Congressional Research Service, Washington DC.

Teodosijevic Lazovic, S. (2020). Cybernetics in function of ambitions future of agriculture. Economics of Agriculture, 67(1), 69-85. doi.org/10.5937/ekoPolj2001069T

Tóth, M., Felföldi, J., & Szilágyi, R. (2019). Possibilities of IoT based management system in greenhouses. Georgikon for Agriculture, 23(3), 43-62.

Trendov, N., Varas, S., & Zeng, M. (2019). Digtal Technologies in Agriculture and Rural Areas - Status Report, FAO, Rome. Italy.

Tseng, F., Cho, H., & Wu, H. (2019). Applying big data for intelligent agriculturebased crop selection analysis. IEEE Access, 7(1), 116965-116974. doi.org/10.1109/access.2019.2935564

Tzounis, A., Katsoulas, N., & Bartzanas, T. (2017). Internet of Things in Agriculture, Recent Advances and Future Challenges. Biosystems Engineering, 164, 31-48. doi.org/10.1016/j.biosystemseng.2017.09.007

Wang, L., Lan, Y., Zhang, Y., Zhang, H., Tahir, M., Ou, S., Liu, X., & Chen, P. (2019). Applications and Prospects of Agricultural Unmanned Aerial Vehicle Obstacle Avoidance Technology in China. Sensors, 19(3), 642-657. doi.org/10.3390/s19030642

Wolfert, S., Ge, L., Verdouw, C., & Bogaardt, M. (2017). Big data in smart farming–a review. Agricultural Systems, 153(1), 69-80. doi.org/10.1016/j.agsy.2017.01.023

World Population Prospects (2019). Ten Key Findings. New York, USA. Retrieved from https://population.un.org/wpp (October 25, 2020).

Xia, C., Zhao, S., & Valle, H. (2017). Productivity in Australia’s broadacre and dairy industries. Agricultural Commodities Report, Kanbera.

Xu, L., He, W., & Shancang, Li. (2014). Internet of things in industries: A survey. IEEE Transactions on Industrial Informatics, 10(4), 2233-2243. doi.org/10.1109/tii.2014.2300753

Yadav, R., Rathod, J., & Nair, V. (2015). Big data meets small sensors in precision agriculture. International Journal of Computer Applications, 975(1), 8887 - 8895.

Zikria, Y. B., Kim, S. W., Hahm, O., Afzal, K., & Aalsalem, M. Y. (2019). Internet of Things (IoT) operating systems management: Opportunities, challenges, and solution. Sensors, 19(8), 1793. doi.org/10.3390/s19081793

Zhang, C., & Kovacs, J. (2012). The Application of Small Unmanned Aerial Systems for Precision Agriculture: A Review. Precision Agriculture, 13, 693–712. doi.org/10.1007/s11119-012-9274-5.

Zhang, H., Xing, S., & Wang, J. (2021). Security and application of wireless sensor network. Procedia Computer Science, 183, 486–492. doi.org/10.1016/j.procs.2021.02.088

Downloads

Published

2022-03-29

How to Cite

Radic, V. N., Radić, N. V., & Cogoljević, V. D. (2022). NEW TECHNOLOGIES AS A DRIVER OF CHANGE IN THE AGRICULTURAL SECTOR . Economics of Agriculture, 69(1), 147–162. https://doi.org/10.5937/ekoPolj2201147R