ECONOMICAL POTATO PRODUCTION ACCORDING TO THE ARIMA MODELING APPROACH FOR CLIMATE ADAPTATION

Authors

  • Divna Simić Institute for Science Application in Agriculture, Blvd. Despota Stefana 68b, 11060 Belgrade, Serbia https://orcid.org/0000-0003-3854-2617
  • Snežana Janković Institute for Science Application in Agriculture, Blvd. Despota Stefana 68b, 11060 Belgrade, Serbia https://orcid.org/0000-0002-0644-6690
  • Dragana B. Popović Faculty of Economics in Subotica, University of Novi Sad, Dr. Sime Miloševića 16, Novi Sad 210000, Serbia https://orcid.org/0000-0002-3023-5877
  • Vojin Cvijanović Institute for Science Application in Agriculture, Blvd. Despota Stefana 68b, 11060 Belgrade, Serbia https://orcid.org/0000-0002-1347-952X
  • Nataša Tolimir Institute for Science Application in Agriculture, Blvd. Despota Stefana 68b, 11060 Belgrade, Serbia https://orcid.org/0000-0002-8464-8992

DOI:

https://doi.org/10.59267/ekoPolj25031039S

Keywords:

Economical potato production, yield projection, climate change and sustainable agriculture, ARIMA model

Abstract

In is evident that global climate change, marked by decreased rainfall and higher temperatures affecting potato economical production, therefore they are yield projections are a crucial element in agricultural planning. Climate change, especially drought, poses significant challenges, necessitating adaptive strategies to mitigate adverse impacts. Potatoes, as a vital food crop, hold exceptional nutritional, biological, agronomic, and economic importance. This study aims to project potato production, average yields, and cultivated areas in Serbia over the next three years using ARIMA models based on 19 years of time-series data. The model’s focus on short-term projections (2024–2026) aligns with Serbia’s need for immediate climate adaptation strategies. Model performance was validated using RMSE and AIC/ BIC metrics, with comparative analysis against ETS benchmarks. The results inform strategic responses to climate risks, provide a valuable approach to yield projection, advancing sustainable agriculture, food security, and facilitating complex production planning.

Downloads

Download data is not yet available.

References

Badr, M., El-Tohamy, W., & Zaghloul, A. (2012). Yield and water use efficiency of potato grown under different irrigation and nitrogen levels in an arid region. Agricultural Water Management, 110, 9-15.

Chengzhi C., Sha W., Shengnan D., & Wenfang C. (2024). Potential yield of potato under global warming based on an ARIMA-TR Model. Potato Research, 1-17. https://doi.org/10.1007/s11540-024-09745-w

Dabetić, S. (2016). Application of Mathematical-Statistical Methods in the Study of Meat Supply and Demand, PhD Dissertation, Faculty of Economics and Engineering Management, University Business Academy, Novi Sad.

Etuk, E. H. (2012). Seasonal ARIMA model to Nigerian consumer price index data. American Journal of Scientific and Industrial Research, 3(5), 283-287. https://doi.org/10.5251/ajsir.2012.3.5.283.287

FAO (2021). Faostat. https://www.fao.org/faostat/en/#home

FAO (2024). Production/Crops and Resource/Fertilizer. FAOSTAT Database Collections, Rome.

George, T.S., Taylor, M.A., Dodd, I.C., & White, P. J. (2017). Climate change and consequences for potato production: a review of tolerance to emerging abiotic stress. Potato Research, 60(12),239-268. https://doi.org/10.1007/s11540-018-9366-3

Georgieva A.N., Kosev, V.I., & Popović, V.M. (2025). Prospects for breeding and heterosis studies for yield and yield components in white lupine hybrids (Lupinus. albus L.). Genetika, 57(1), 97-112. https://doi.org/10.2298/GENSR2501097G

Hanusz, Z., & Tarasińska, J. (2015). Normalization of the Kolmogorov–Smirnov and Shapiro–Wilk tests of normality. Biometrical Letters, 52(2), 85-93. https://doi.org/10.1515/bile-2015-0008

Haverkort, A., & Struik, P. (2015). Yield levels of potato crops: recent achievements and future prospects. Field Crops Research, 182, 76-85.

Hijmans, R. J. (2003). The effect of climate change on global potato production. American Journal of Potato Research, 80, 271-279. https://doi.org/10.1007/BF02855363

Hyndman R. J. (2018). Forecasting: principles and practice. OTexts. Book. pp. 384.

Ilić, I., Jovanović, S., Janković–Milić, V. (2016). Forecasting corn production in Serbia using ARIMA model. Economics of Agriculture, 63(4), 1141-1156.

Iqbal, N., Bakhshm K. H. U. D. A., Maqboolm A. S. I. F., & Ahmadm A.S. (2005). Use of the ARIMA model for forecasting wheat area and production in Pakistan. Journal of Agriculture and Social Sciences, 1(2), 120-122.

Joksimović, M., Ivanović, S., & Šoja, S. J. (2020). Production and tendency in milk processing in Montenegro. Agric. Economics, 67(2), 391-404. https://doi. org/10.5937/ekoPolj2002391J

Jovovic, Z., Dolijanovic, Z., Spalevic, V., Dudic, B., Przulj, N., Velimirovic, A., & Popovic, V. (2021). Effects of liming and nutrient management on yield and other parameters of potato productivity on acid soils in Montenegro. Agronomy - Basel. 11(5), 980. https://doi.org/10.3390/agronomy11050980

King, B. A., Stark, J. C., & Neibling, H. (2020). Potato irrigation management. In: Potato Production Systems. Springer International Publishing. Switzerland. 417-446.

Kolarić, L., Popović, V., Živanović, L., Ljubičić N., Stevanović P., Šarčević Todosijević Lj., Simić, D., & Ikanović, J. (2021). Buckwheat yield traits response as influenced by row spacing, nitrogen, phosphorus, and potassium management. Agronomy, 11(12), 2371, https://doi.org/10.3390/agronomy11122371

Kosev V., V. Vasileva, & Popovic V. (2023). Yodai – a new variety of grass pea (Lathyrus sativus L.). Genetika, 55(3), 997-1005. https://doi.org/10.2298/GENSR2303997K

Kosev, V., Vasileva V., & Popović V. (2024). New variety of white lupine Monica (Lupinus albus L.). Genetika. 56(2), 347-356. https://doi.org/10.2298/GENSR2402347K

Love, S.L., Manrique-Klinge, K., Stark, J.C., & Quispe-Mamani, E. (2020). A short history of potato production systems. Potato Production Systems, 1-17.

Lutaladio, N. & Castaldi, L. (2009). Potato: The hidden treasure. Journal of Food Composition and Analysis, 22(6), 491-493. https://doi.org/10.1016/j.jfca.2009.05.002

Marloes, P. van Loon, Seyyedmajid, A., Isaac, K. A., Hendrik, B., BoguszewskaMańkowska, D., Ruiz de Galarreta, J.I., Geling, E.H., Kryvobok, O., Kryvoshein, O., Landeras, G., Okuda, N., Parisi, B., Trawczyński, C., Zarzyńska, K., & Martin K. (2025). Van Ittersum, Insights into the potential of potato production across Europe, Crop and Environment, 4(2),97-106. https://doi.org/10.1016/j.crope.2025.03.002

Milačić, D. (2024). Strategijski menadžment kao instrument razvoja održivog turizma u Srbiji. Održivi razvoj, 6(2), 7-22. https://doi.org/10.5937/OdrRaz2402007M

Milić, S., Bošnjak, Đ., Maksimović, I., Pejić, B., Sekulić, P., Ninkov, J., & Zeremski-Škorić, T. (2010). Yield and Yield Structure of Potatoes Depending on Irrigation. Field & Vegetable Crops Research / Ratarstvo i povrtarstvo, 47(1), 257-265.

Mishra, P., Alhussan, A. A., Khafaga, D. S., Lal, P., Ray, S., Abotaleb, M,, & El-Kenawy, E. S. M. (2024). Forecasting Production of Potato for a Sustainable Future: Global Market Analysis. Potato Research, 67, 1671-1690. https://doi.org/10.1007/s11540-024-09717-0

Mladenović, Z., & Nojković, A. (2012). Applied Time Series Analysis. Center for Publishing Activities, Faculty of Economics. Panoeconomicus, 1, 133-137.

Mutavdžić, B., Drinić, L., Novković, N., Ostojić, A., & Rokvić, G. (2014). Forecasting the Development of Vegetable Production in the Republic of Srpska. DETUROPE - The Central European Journal of Regional Development and Tourism, 6(1), 50-64.

Ncobela C.N., Kanengoni A.T., Hlatini V.A., Thomas R.S., & Chimonyo M. (2017). A review of the utility of potato by-products as a feed resource for smallholder pig production. Animal Feed Science and Technology, 227, 107-117. https://doi.org/10.1016/j.anifeedsci.2017.02.008

Nasir, M.W., & Toth, Z. (2022). Effect of drought stress on potato production: A review. Agronomy, 12(3), 635. https://doi.org/10.3390/agronomy12030635

Novković, N., Mutavdžić, B., Ilin, Ž., & Ivanišević, D. (2013). Potato Production Forecasting. Agro-knowledge Journal, 14(3), 345-355.

Oljača, J. M. (2016). The influence of potato variety and cultivation technology on resistance to stress. / Uticaj sorte i tehnologije gajenja krompira na otpornost prema stresu. Doctoral dissertation, University of Belgrade Serbia.

Obidiegwu, J. E., Bryan, G. J., Jones, H. G., & Prashar, A. (2015). Coping with drought: stress and adaptive responses in potato and perspectives for improvement. Frontiers in Plant Science, 6, 542. https://doi.org/10.3389/fpls.2015.00542

Petrović, M., Ljiljanić, N., Cvijanović, V., Tomić, V., & Radišić, R. (2021). Financial aspects of potato production on farms in the Republic of Serbia. X International Symposium on Agricultural Sciences AgroReS, Trebinje, pp. 192-202.

Popović V., Malešević M., Miladinović J., Marić V., & Živanović Lj. (2013): Effect of Agroecological Factors on Variations in Yield, Protein and Oil Contents in Soybean Grain. Romanian Agricultural Research, 30, 241-247.

Popović, V., Vasileva, V., Ljubičić, N., Rakaščan, N., & Ikanović, J. (2024). Environment, Soil and Digestate Interaction of Maize Silage and Biogas Production. Agronomy. 14(11), 2612, https://doi.org/10.3390/agronomy14112612

Popović V., Bojović, R., Bošković, J., Stanisavljević, D., Kravić, N., Popović D., & Ikanović J. (2025). Economic Seed Production and Storage of Fiber Crops in Gene Banks in Serbia. In: Al-Khayri, J.M., Salem, K.F.M., Jain, S.M. (eds) Plant Gene Banks: Genetic Resources Collections, Conservation and Sustainable Utilization, Springer, Singapore, p. 1-40. https://doi.org/10.1007/978-981-99-4236-7_108-1

Rahman M. M., Islam M. A., Mahboob M. G., Mohammad N., & Ahmed I. (2022). Forecasting of potato production in Bangladesh using ARIMA and mixed model approach. Sch. Journal Agric. Vet. Sci, 10, 136-145. https://doi.org/10.36347/sjavs.2022.v09i10.001

Rajić, Z., Ljiljanić, N., & Petrović, M. (2023). Production and Economic Aspects of Vegetable Production in the Republic of Serbia 85. Agribusiness, Food and Rural Areas-Perspectives and Challenges of Agenda 4.0., 2At: Faculty of Agriculture, University of Belgrade, 240-250.

Raymundo R., Asseng S., Robertson, R., Petsakos, A., Hoogenboom, G., Quiroz, R., & Wolf, J. (2018). Climate change impact on global potato production. European Journal of Agronomy, 100, 87-98. https://doi.org/10.1016/j.eja.2017.11.008

Reddy, B. J., Mandal, R., Chakroborty, M., Hijam, L., & Dutta, P. (2018). A review on potato (Solanum tuberosum L.) and its genetic diversity. International Journal of Genetics, 10(2), 360-364. https://doi.org/10.9735/0975-2862.10.2.360-364

Slavković, G., Stanković, M., & Kilibarda, V. (2024). Statistical analysis of the Maastricht convergence criteria with reference to the Republic of Serbia. Finansijski savetnik - časopis za pravo i finansije, 1(29). 7-26.

Spooner, D.M., Van den Berg, R.G., Rodrigues, A., Bamberg, J.B., Hijmans R.J., & Lara-Cabrera S. (2004). Wild Potatoes (Solanum Section Petota; Solanaceae) of North and Central America; The American Society of Plant Taxonomists [S.I.]: St. Louis, MO, USA.

Stanković, S., Kostić, M., Sivčev, I., Janković, S., Kljajić, P., Todorović, G., & Jevđović, R. (2012). Resistance of Colorado potato beetle (Coleoptera: Chrysomelidae) to neonicotinoids, pyrethroids and nereistoxins in Serbia. Romanian Biotechnological Letters, 17(5), 7599-7609.

Stanković, S., Janković, S., Cvijanović, V., Simić, D., Djurić, N., Maslovarić, M., & Krnjajić, S. (2024). Colorado potato beetle resistant population insight using single insect Carboxylesterases (ALiE) Testing. American Journal of Potato Research, 101(4), 265-274. https://doi.org/10.1007/s12230-024-09947-5

Trnka, M., Olesen, J. E., Kersebaum, K. C., Skjelvag ,A. O., Eitzinger, J., Seguin, B., & Žalud, Z. (2011). Agroclimatic conditions in Europe under climate change. Global Change Biology, 17(7), 2298-2318. https://doi.org/10.1111/j.1365-2486.2011.02396.x

Vasileva, V., Georgiev, G., & Popović V. (2023). Genotypic specificity of soybean [Glycine max (L.) Merr.] plastid pigments content under sowing date and interrow spacing. Genetika. 55 (2), 455-471. https://doi.org/10.2298/GENSR2302455V

Westermann, D.T. (2005). Nutritional requirements of potatoes. American Journal of Potato Research, 82, 301-307. https://doi.org/10.1007/BF02871960

Wijesinha-Bettoni, R., & Mouillé B. (2019). The Contribution of Potatoes to Global Food Security, Nutrition and Healthy Diets. American Journal of Potato Research, 96, 139-149. https://doi.org/10.1007/s12230-018-09697-1

Weisz R., Kaminski J., & Smilowitz Z. (1994). Water deficit effects on potato leaf growth and transpiration: utilizing fraction extractable soil water for comparison with other crops. American Potato Journal, 71, 829-840.

Zaheer, K., & Akhtar, M.H. (2016). Potato production, usage, and nutrition—a review. Critical Reviews in Food Science and Nutrition, 56(5), 711-721. https://doi.org/10.1080/10408398.2012.724479

Downloads

Published

2025-09-30

How to Cite

Simić, D. ., Janković, S. ., Popović, D. B. ., Cvijanović, V. ., & Tolimir, N. . (2025). ECONOMICAL POTATO PRODUCTION ACCORDING TO THE ARIMA MODELING APPROACH FOR CLIMATE ADAPTATION. Economic of Agriculture, 72(3), 1039–1055. https://doi.org/10.59267/ekoPolj25031039S

Issue

Section

Original scientific papers