THE AMOUNT, ECONOMIC VALUE AND ENVIRONMENTAL EMISSION OF CEPHAPIRIN AT DRY-OFF IN HOLSTEIN AND SIMMENTAL DAIRY COWS BY HERD SIZE
DOI:
https://doi.org/10.59267/ekoPolj25041343LKeywords:
mastitis, selective dry cow therapy, cephapirin, environmental antibiotic emission, herd sizeAbstract
The research aim was to quantify the use of cephapirin in dry cow therapy, to estimate the economic value and potential environmental emissions regarding the herd size. The analysis included a 307,531 test-day records from Holsteins and 383,208 from Simmental. Udder health status at the last milk recording before dry-off was classified according to SCC criteria, and the scenario assumed universal use of BDCT, 1.2 g cephapirin per cow (300 mg per quarter × 4). The estimated total amount of cephapirin was 369.0 kg in Holsteins and 459.8 kg in Simmentals. The economic cost of the application was €7.85 million in Holstein and €9.78 million in Simmental herds, with healthy cows generating the largest share of the cost due to their large numbers. The estimated environmental release was 221.4 kg for Holstein and 275.9 kg for Simmental, with PEC/PNEC ratios high above the risk threshold, RQ 4,428.41 and 5,518.19, respectively.
Downloads
References
Ajulo, S., & Awosile, B. (2024). Global antimicrobial resistance and use surveillance system (GLASS 2022): Investigating the relationship between antimicrobial resistance and antimicrobial consumption data across the participating countries. PLOS ONE, 19(2), e0297921. https://doi.org/10.1371/journal.pone.0297921
Beggs, D. S., Jongman, E. C., Hemsworth, P. H., & Fisher, A. D. (2019). The effects of herd size on the welfare of dairy cows in a pasture-based system using animal- and resource-based indicators. Journal of Dairy Science, 102(4), 3406– 3420. https://doi.org/10.3168/jds.2018-14850
Bengtsson-Palme, J., & Larsson, D. G. J. (2016). Concentrations of antibiotics predicted to select for resistant bacteria: Proposed limits for environmental regulation. Environment International, 86, 140–149. https://doi.org/10.1016/j.envint.2015.10.015
Berendsen, B. J. A., Wegh, R. S., Memelink, J., Zuidema, T., & Stolker, L. A. M. (2015). The analysis of animal faeces as a tool to monitor antibiotic usage. Talanta, 132, 258–268. https://doi.org/10.1016/j.talanta.2014.09.022
Cortinhas, C. S., Oliveira, L., Hulland, C. A., Santos, M. V., & Ruegg, P. L. (2013). Minimum inhibitory concentrations of cephalosporin compounds and their active metabolites for selected mastitis pathogens. American Journal of Veterinary Research, 74(5), 683–690. https://doi.org/10.2460/ajvr.74.5.683
European Chemicals Agency (ECHA). (2024). Cephapirin sodium – Registration Dossier. Retrieved from https://echa.europa.eu/registration-dossier/-/registereddossier/29333
Filippone Pavesi, L.; Pollera, C.; Sala, G.; Cremonesi, P.; Monistero, V.; Biscarini, F.; Bronzo, V. Effect of the Selective Dry Cow Therapy on Udder Health and Milk Microbiota. Antibiotics 2023, 12, 1259. https://doi.org/10.3390/antibiotics12081259
Gantner, V., Šinka, D., Popović, V., Ćosić, M., Sudarić, T., & Gantner, R. (2023). The variability of microclimate parameters in dairy cattle farm facility. In Sustainable agriculture and rural development: Thematic proceedings of the III international scientific conference, December 2022, Belgrade (pp. 77–86). Institute of Agricultural Economics. https://www.iep.bg.ac.rs
Green, M. J., Green, L. E., Medley, G. F., Schukken, Y. H., & Bradley, A. J. (2002). Influence of Dry Period Bacterial Intramammary Infection on Clinical Mastitis in Dairy Cows. Journal of Dairy Science, 85(10), 2589–2599. https://doi.org/10.3168/jds.S0022-0302(02)74343-9
Guadagnini, M., Gogna, C., Tolasi, C., Tolasi, G., Gnali, G., Freu, G., Masroure, A. J., & Moroni, P. (2023). Approach to Selective Dry Cow Therapy in Early Adopter Italian Dairy Farms: Why Compliance Is So Important. Animals, 13(22), 3485. https://doi.org/10.3390/ani13223485
Halasa, T., Huijps, K., Østerås, O., & Hogeveen, H. (2007). Economic effects of bovine mastitis and mastitis management: A review. Veterinary Quarterly, 29(1), 18–31. https://doi.org/10.1080/01652176.2007.9695224
Kharel, M., Timisina, K. P., Adhikari, S. P., Dhakal, C., Khanal, D. R., & Paudel, T. P. (2023). Does mastitis cause economic loss in dairy cattle in Nepal? Nepal Agriculture Research Journal, 15(1), 55–65. https://doi.org/10.3126/narj.v15i1.51064
Krogh, M. A., Nielsen, C. L., & Sørensen, J. T. (2020). Antimicrobial use in organic and conventional dairy herds. Animal, 14(10), 2187–2193. https://doi.org/10.1017/S1751731120000920
Kupczyński, R., Bednarski, M., Sokołowski, M., Kowalkowski, W., & Pacyga, K. (2024). Comparison of Antibiotic Use and the Frequency of Diseases Depending on the Size of Herd and the Type of Cattle Breeding. Animals, 14(13), 1889. https://doi.org/10.3390/ani14131889
Lipkens, Z.; Piepers, S.; De Vliegher, S. Impact of Selective Dry Cow Therapy on Antimicrobial Consumption, Udder Health, Milk Yield, and Culling Hazard in Commercial Dairy Herds. Antibiotics 2023, 12, 901. https://doi.org/ 10.3390/antibiotics120509011
Maksimović, Z., Čengić, B., Ćutuk, A., & Maksimović, A. (2024). Antimicrobial Resistance of Cattle Mastitis-Causing Bacteria: How to Treat? In K. Petrovski (Ed.), Veterinary Medicine and Science (Vol. 19). IntechOpen. https://doi.org/10.5772/intechopen.112977
McCubbin, K. D., De Jong, E., Brummelhuis, C. M., Bodaneze, J., Biesheuvel, M., Kelton, D. F., Uyama, T., Dufour, S., Sanchez, J., Rizzo, D., Léger, D., & Barkema, H. W. (2023). Antimicrobial and teat sealant use and selection criteria at dry-off on Canadian dairy farms. Journal of Dairy Science, 106(10), 7104–7116. https://doi.org/10.3168/jds.2022-23083
Medical Intertrade d.o.o. (2025). Ponuda za antibiotike: Mastidry, Cefa-Safe, Orbeseal, Keraseal (Ponuda br. 12379/2025, 12. lipnja 2025.). Zagreb: Medical Intertrade d.o.o.
Müller, S., Nitz, J., Tellen, A., Klocke, D., & Krömker, V. (2023). Effect of Antibiotic Compared to Non-Antibiotic Dry Cow Treatment on the Bacteriological Cure of Intramammary Infections during the Dry Period—A Retrospective Cross-Sectional Study. Antibiotics, 12(3), 429. https://doi.org/10.3390/antibiotics12030429
Navaei, H., Vodjgani, M., Khoramian, B., Akbarinejad, V., Gharagozloo, F., Garoussi, M. T., & Momeni, A. (2025). Evaluation of a new method of selective dry cow treatment using microbiological culture and antibiogram results. BMC Veterinary Research, 21(1). https://doi.org/10.1186/s12917-025-04767-z
Očić, V., Bobić Šakić, B., & Grgić, Z. (2022). Economic analysis of specialized dairy farms in Croatia according to FADN. Mljekarstvo, 73(1), 50–58. https://doi.org/10.15567/mljekarstvo.2023.0106
Peña-Mosca, F., Gaire, T. N., Dean, C., Ferm, P., Manriquez, D., Pinedo, P., Noyes, N., & Caixeta, L. (2025). Exploring the phylogenetic diversity and antimicrobial activity of non-aureus staphylococci and mammaliicocci isolated from teat apices of organic dairy cows. bioRxiv 2024.02.01.578391; https://doi.org/10.1101/2024.02.01.578391
Popescu, G., & Andrei, J. (2011). From industrial holdings to subsistence farms in Romanian agriculture. Analyzing the subsistence components of CAP. Agricultural Economics, 57(11), 555.
Ribeiro, A. R., Sures, B., & Schmidt, T. C. (2018a). Cephalosporin antibiotics in the aquatic environment: A critical review of occurrence, fate, ecotoxicity and removal technologies. Environmental Pollution, 241, 1153–1166. https://doi.org/10.1016/j.envpol.2018.06.040
Ribeiro, A. R., Sures, B., & Schmidt, T. C. (2018b). Ecotoxicity of the two veterinarian antibiotics ceftiofur and cefapirin before and after phototransformation. Science of The Total Environment, 619–620, 866–873. https://doi.org/10.1016/j.scitotenv.2017.11.109
Rowe, S. M., Godden, S. M., Nydam, D. V., Gorden, P. J., Lago, A., Vasquez, A. K., Royster, E., Timmerman, J., & Thomas, M. J. (2020). Randomized controlled trial investigating the effect of 2 selective dry-cow therapy protocols on udder health and performance in the subsequent lactation. Journal of Dairy Science, 103(7), 6493–6503. https://doi.org/10.3168/jds.2019-17961
Seegers, H., Fourichon, C., & Beaudeau, F. (2003). Production effects related to mastitis and mastitis economics in dairy cattle herds. Veterinary Research, 34(5), 475–491. https://doi.org/10.1051/vetres:2003027
Smith, J. W., Ely, L. O., & Chapa, A. M. (2000). Effect of Region, Herd Size, and Milk Production on Reasons Cows Leave the Herd. Journal of Dairy Science, 83(12), 2980–2987. https://doi.org/10.3168/jds.S0022-0302(00)75198-8
Stocco, G., Cipolat-Gotet, C., Stefanon, B., Zecconi, A., Francescutti, M., Mountricha, M., & Summer, A. (2023). Herd and animal factors affect the variability of total and differential somatic cell count in bovine milk. Journal of Animal Science, 101, skac406. https://doi.org/10.1093/jas/skac406
Stockler, R. M., Morin, D. E., Lantz, R. K., & Constable, P. D. (2009). Effect of milking frequency and dosing interval on the pharmacokinetics of cephapirin after intramammary infusion in lactating dairy cows. Journal of Dairy Science, 92(9), 4262–4275. https://doi.org/10.3168/jds.2008-1916
Tell, J., Caldwell, D. J., Häner, A., Hellstern, J., Hoeger, B., Journel, R., Mastrocco, F., Ryan, J. J., Snape, J., Straub, J. O., & Vestel, J. (2019). Science-based Targets for Antibiotics in Receiving Waters from Pharmaceutical Manufacturing Operations. Integrated Environmental Assessment and Management, 15(3), 312–319. https://doi.org/10.1002/ieam.4141
Thiele‐Bruhn, S. (2003). Pharmaceutical antibiotic compounds in soils – a review. Journal of Plant Nutrition and Soil Science, 166(2), 145–167. https://doi.org/10.1002/jpln.200390023
Tomanić, D., Samardžija, M., Stančić, I., Kladar, N., Maćešić, N., & Kovačević, Z. (2024). Mastitis challenges in Serbian dairy farming: A study on somatic cell counts and pathogen distribution. Mljekarstvo, 239–248. https://doi.org/10.15567/mljekarstvo.2024.0307
Vanhoudt, A., Hees-Huijps, K. van, Knegsel, A. T. M. van, Sampimon, O. C., Vernooij, J. C. M., Nielen, M., & Werven, T. van. (2018). Effects of reduced intramammary antimicrobial use during the dry period on udder health in Dutch dairy herds. Journal of Dairy Science, 101(4), 3248–3260. https://doi.org/10.3168/jds.2017-13555
Vissio, C., Richardet, M., Issaly, L. C., & Larriestra, A. J. (2023). Decision making on dry cow therapy: Economic evaluation using field data under Argentinian production conditions. Ciência e Agrotecnologia, 47, e016322. https://doi.org/10.1590/1413-7054202347016322
Weber, J., Borchardt, S., Seidel, J., Schreiter, R., Wehrle, F., Donat, K., & Freick, M. (2021). Effects of Selective Dry Cow Treatment on Intramammary Infection Risk after Calving, Cure Risk during the Dry Period, and Antibiotic Use at DryingOff: A Systematic Review and Meta-Analysis of Current Literature (2000–2021). Animals, 11(12), 3403. https://doi.org/10.3390/ani111234036
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Economic of Agriculture

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.